Critical exponents of the explosive percolation transition
نویسندگان
چکیده
منابع مشابه
Continuity of the explosive percolation transition.
The explosive percolation problem on the complete graph is investigated via extensive numerical simulations. We obtain the cluster-size distribution at the moment when the cluster size heterogeneity becomes maximum. The distribution is found to be well described by the power-law form with the decay exponent τ=2.06(2), followed by a hump. We then use the finite-size scaling method to make all th...
متن کاملThe Nature of Explosive Percolation Phase Transition
In this Letter, we show that the explosive percolation is a novel continuous phase transition. The order-parameter-distribution histogram at the percolation threshold is studied in Erd˝ os-Rényi networks, scale-free networks, and square lattice. In finite system, two well-defined Gaussian-like peaks coexist, and the valley between the two peaks is suppressed with the system size increasing. Thi...
متن کاملSolution of the explosive percolation quest: scaling functions and critical exponents.
Percolation refers to the emergence of a giant connected cluster in a disordered system when the number of connections between nodes exceeds a critical value. The percolation phase transitions were believed to be continuous until recently when, in a new so-called "explosive percolation" problem for a competition-driven process, a discontinuous phase transition was reported. The analysis of evol...
متن کاملCritical exponents for two-dimensional percolation
We show how to combine Kesten’s scaling relations, the determination of critical exponents associated to the stochastic Loewner evolution process by Lawler, Schramm, and Werner, and Smirnov’s proof of Cardy’s formula, in order to determine the existence and value of critical exponents associated to percolation on the triangular lattice.
متن کاملCritical exponents in percolation via lattice animals
We examine the percolation model by an approach involving lattice animals, divided according to their surface-area-to-volume ratio. Throughout, we work with the bond percolation model in Z. However, the results apply to the site or bond model on any infinite transitive amenable graph with inessential changes. For any given p ∈ (0, 1), two lattice animals with given size are equally likely to ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2014
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.89.042148